Minggu, 06 Desember 2015

10 contoh soal Matematika Logaritma beserta Pembahasannya

1. Ubah bentuk pangkat pada soal-soal berikut menjadi bentuk logaritma:
a) 23 = 8
b) 54 = 625
c) 72 = 49

Pembahasan
Transformasi bentuk pangkat ke bentuk logaritma:
Jika ba = c, maka blog c = a
a) 23 = 8 → 2log 8 = 3
b) 54 = 625 → 5log 625 = 4
c) 72 = 49 → 7log 49 = 2
2. Tentukan nilai dari:
a) 2log 8 + 3log 9 + 5log 125
b) 2log 1/8 + 3log 1/9 + 5log 1/125

Pembahasan
a) 2log 8 + 3log 9 + 5log 125 
2log 23 + 3log 32 + 5log 53 = 3 2log 2 + 2 3log 3 + 3 5log 5 
= 3 + 2 + 3 = 8 

b) 2log 1/8 + 3log 1/9 + 5log 1/125
2log 2−3 + 3log 3−2 + 5log 5−3
= − 3 − 2 − 3 = − 8

3. Tentukan nilai dari
a) 4log 8 + 27log 9
b) 8log 4 + 27log 1/9



Pembahasan
a) 4log 8 + 27log 9
22log 23 + 33log 32
= 3/2 2log 2 + 2/3 3log 3
= 3/2 + 2/3 = 9/6 + 4/6 = 13/6

b) 8log 4 + 27log 1/9

23log 22 + 33log 3−2
= 2/3 2log 2 + (−2/3) 3log 3
= 2/3 − 2/3 = 0 

4. Tentukan nilai dari:
a) √2log 8
b) √3log 27

Pembahasan
a) √2log 8
21/2log 23 = 3/0,5 2log 2 = 3/0,5 = 6

b) √3log 9
31/2log 32 = 2/0,5 3log 3 = 2/0,5 = 4

5. Diketahui:
log p = A
log q = B
Tentukan nilai dari log p3 q2

Pembahasan
log p3 q2 = log p3 + log q2 = 3 log p + 2 log q = 3A + 2B

6. Diketahui
log 40 = A dan log 2 = B, tentukan nilai dari log 20

Pembahasan
log 20 = log 40/2 = log 40 − log 2 = A − B

7. Diketahui 2log 7 = a dan 2log 3 = b. Tentukan nilai dari 6log 14

Pembahasan
2log 7 = a 
log 7log 2 = a
log 7 = a log 2

2log 3 = b
log 3 / log 2 = b
log 3 = b log 2

6log 14 = log 14/log6 

     log 2.7      log 2 + log 7         log 2 + a log 2       log 2 (1 + a)          (1 + a)
= _________ = ________________ = __________________ =________________ = _________
     log 2. 3      log 2 + log 3          log 2 + b log 2      log 2 (1 + b)          (1 + b)
                      
8. Diketahui 2log  (12 x + 4) = 3. Tentukan nilai x

Pembahasan
2log  (12 x + 4) = 3
Ruas kiri bentuknya log, ruas kanan belum bentuk log, ubah dulu ruas kanan agar jadi bentuk log.  Ingat 3 itu sama juga dengan 2log 2. Ingat rumus alog ab = b jadi
 2log √( 12 x + 4) = 2log 23
Kiri kanan sudah bentuk log dengan basis yang sama-sama dua, hingga tinggal menyamakan yang di dalam log kiri-kanan atau coret aja lognya:
 2log √( 12 x + 4) = 2log 23
√( 12 x + 4) = 23
√( 12 x + 4)  = 8
Agar hilang akarnya, kuadratkan kiri, kuadratkan kanan. Yang kiri jadi hilang akarnya:
12 x + 4 = 82
12x + 4 = 64
12 x = 60
x = 60/12 = 5

9. Tentukan nilai dari 3log 5log 125
Pembahasan
3log 5log 125 = 3log 5log 53
3log 3 = 1

10. Diketahui  2log 3 = m dan  2log 5 = n . Tentukan nilai dari 2log 90
Pembahasan
               log 3      
2log 3 = _______ = m   Sehingga    log 3 = m log 2
               log 2
               log 5      
2log 5 = _______ = n   Sehingga    log 5 = n log 2
               log 2
                  log 32. 5 . 2                   2 log 3 + log 5 + log 2        
2log 90 = ___________________ =  ______________________________ 
                    l

Tidak ada komentar:

Posting Komentar